Halvade-RNA: Parallel variant calling from transcriptomic data using MapReduce
نویسندگان
چکیده
Given the current cost-effectiveness of next-generation sequencing, the amount of DNA-seq and RNA-seq data generated is ever increasing. One of the primary objectives of NGS experiments is calling genetic variants. While highly accurate, most variant calling pipelines are not optimized to run efficiently on large data sets. However, as variant calling in genomic data has become common practice, several methods have been proposed to reduce runtime for DNA-seq analysis through the use of parallel computing. Determining the effectively expressed variants from transcriptomics (RNA-seq) data has only recently become possible, and as such does not yet benefit from efficiently parallelized workflows. We introduce Halvade-RNA, a parallel, multi-node RNA-seq variant calling pipeline based on the GATK Best Practices recommendations. Halvade-RNA makes use of the MapReduce programming model to create and manage parallel data streams on which multiple instances of existing tools such as STAR and GATK operate concurrently. Whereas the single-threaded processing of a typical RNA-seq sample requires ∼28h, Halvade-RNA reduces this runtime to ∼2h using a small cluster with two 20-core machines. Even on a single, multi-core workstation, Halvade-RNA can significantly reduce runtime compared to using multi-threading, thus providing for a more cost-effective processing of RNA-seq data. Halvade-RNA is written in Java and uses the Hadoop MapReduce 2.0 API. It supports a wide range of distributions of Hadoop, including Cloudera and Amazon EMR.
منابع مشابه
Halvade: scalable sequence analysis with MapReduce
MOTIVATION Post-sequencing DNA analysis typically consists of read mapping followed by variant calling. Especially for whole genome sequencing, this computational step is very time-consuming, even when using multithreading on a multi-core machine. RESULTS We present Halvade, a framework that enables sequencing pipelines to be executed in parallel on a multi-node and/or multi-core compute infr...
متن کاملPerformance Analysis of a Parallel, Multi-node Pipeline for DNA Sequencing
Post-sequencing DNA analysis typically consists of read mapping followed by variant calling and is very time-consuming, even on a multi-core machine. Recently, we proposed Halvade, a parallel, multi-node implementation of a DNA sequencing pipeline according to the GATK Best Practices recommendations. The MapReduce programming model is used to distribute the workload among different workers. In ...
متن کاملReview of Current Methods, Applications, and Data Management for the Bioinformatics Analysis of Whole Exome Sequencing
The advent of next-generation sequencing technologies has greatly promoted advances in the study of human diseases at the genomic, transcriptomic, and epigenetic levels. Exome sequencing, where the coding region of the genome is captured and sequenced at a deep level, has proven to be a cost-effective method to detect disease-causing variants and discover gene targets. In this review, we outlin...
متن کاملGrapevine acidity: SVM tool development and NGS data analyses
English) Single Nucleotide Polymorphisms (SNPs) represent the most abundant type of genetic variation and they are a valuable tool for several biological applications like linkage mapping, integration of genetic and physical maps, population genetics as well as evolutionary and protein structure-function studies. SNP genotyping by mapping DNA reads produced via Next generation sequencing (NGS) ...
متن کاملCloud Computing Technology Algorithms Capabilities in Managing and Processing Big Data in Business Organizations: MapReduce, Hadoop, Parallel Programming
The objective of this study is to verify the importance of the capabilities of cloud computing services in managing and analyzing big data in business organizations because the rapid development in the use of information technology in general and network technology in particular, has led to the trend of many organizations to make their applications available for use via electronic platforms hos...
متن کامل